Vesta.JacobianRepresents an element on the curve. In the case of a curve with a cofactor, the element is not necessarily in the prime subgroup.
module Scalar : Mavryk_bls12_381.Ff_sig.PRIMEmodule Base : Mavryk_bls12_381.Ff_sig.PRIMECheck if a point, represented as a byte array, is on the curve *
val of_bytes_opt : Stdlib.Bytes.t -> t optionAttempt to construct a point from a byte array
val of_bytes_exn : Stdlib.Bytes.t -> tAttempt to construct a point from a byte array. Raise Not_on_curve if the point is not on the curve
val to_bytes : t -> Stdlib.Bytes.tReturn a representation in bytes
val zero : tZero of the elliptic curve
val one : tA fixed generator of the elliptic curve
val is_zero : t -> boolReturn true if the given element is zero
val random : ?state:Stdlib.Random.State.t -> unit -> tGenerate a random element
val a : Base.tval b : Base.tis_on_curve ~x ~y ~z returns true if the coordinates (x, y, z) represents a point on the curve. It does not check the point is in the prime subgroup.
is_in_prime_subgroup ~x ~y ~z returns true if the coordinates (x, y, z) represents a point in the prime subgroup. The coordinates must be a point on the curve
Build a point from the projective coordinates. If the point is not on the curve and in the subgroup, returns None
Build a point from the projective coordinates. If the point is not on the curve and in the subgroup, raise Not_on_curve.