Plompiler.NUMNumeric operations over the native field.
val constant : Csir.Scalar.t -> scalar repr tconstant s returns the constant value s.
range_check ~nb_bits s asserts that s is in the range [0, 2^nb_bits).
val custom :
?qc:Csir.Scalar.t ->
?ql:Csir.Scalar.t ->
?qr:Csir.Scalar.t ->
?qo:Csir.Scalar.t ->
?qm:Csir.Scalar.t ->
?qx2b:Csir.Scalar.t ->
?qx5a:Csir.Scalar.t ->
scalar repr ->
scalar repr ->
scalar repr tcustom ~qc ~ql ~qr ~qo ~qm ~qx2b ~qx5a a b returns a value c for which the following arithmetic constraint is added: qc + ql * a + qr * b + qo * c + qm * a * b +
qx2b * b^2 + qx5a * a^5 = 0
Manually adding constraints can be error-prone. Handle with care.
val assert_custom :
?qc:Csir.Scalar.t ->
?ql:Csir.Scalar.t ->
?qr:Csir.Scalar.t ->
?qo:Csir.Scalar.t ->
?qm:Csir.Scalar.t ->
scalar repr ->
scalar repr ->
scalar repr ->
unit repr tassert_custom ~qc ~ql ~qr ~qo ~qm a b c asserts the following arithmetic constraint: qc + ql * a + qr * b + qo * c + qm * a * b +
qx2b * b^2 + qx5a * a^5 = 0
Manually adding constraints can be error-prone. Handle with care.
val add :
?qc:Csir.Scalar.t ->
?ql:Csir.Scalar.t ->
?qr:Csir.Scalar.t ->
scalar repr ->
scalar repr ->
scalar repr tadd ~qc ~ql ~qr a b returns a value c such that ql * a + qr * b + qc = c.
val add_constant :
?ql:Csir.Scalar.t ->
Csir.Scalar.t ->
scalar repr ->
scalar repr tadd_constant ~ql k a returns a value c such that ql * a + k = c.
mul ~qm a b returns a value c such that qm * a * b = c.
div ~den_coeff a b asserts b is non-zero and returns a value c such that a / (b * den_coeff) = c.
is_zero a returns a boolean c representing whether a is zero.