Make.Int32
32-bit integers.
This module provides operations on the type int32
of signed 32-bit integers. Unlike the built-in int
type, the type int32
is guaranteed to be exactly 32-bit wide on all platforms. All arithmetic operations over int32
are taken modulo 232.
Performance notice: values of type int32
occupy more memory space than values of type int
, and arithmetic operations on int32
are generally slower than those on int
. Use int32
only when the application requires exact 32-bit arithmetic.
Literals for 32-bit integers are suffixed by l:
let zero: int32 = 0l
let one: int32 = 1l
let m_one: int32 = -1l
Integer division. This division rounds the real quotient of its arguments towards zero, as specified for Stdlib
.(/).
Integer remainder. If y
is not zero, the result of Int32.rem x y
satisfies the following property: x = Int32.add (Int32.mul (Int32.div x y) y) (Int32.rem x y)
. If y = 0
, Int32.rem x y
raises Division_by_zero
.
Int32.shift_left x y
shifts x
to the left by y
bits. The result is unspecified if y < 0
or y >= 32
.
Int32.shift_right x y
shifts x
to the right by y
bits. This is an arithmetic shift: the sign bit of x
is replicated and inserted in the vacated bits. The result is unspecified if y < 0
or y >= 32
.
Int32.shift_right_logical x y
shifts x
to the right by y
bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of x
. The result is unspecified if y < 0
or y >= 32
.
Convert the given integer (type int
) to a 32-bit integer (type int32
). On 64-bit platforms, the argument is taken modulo 232.
Convert the given 32-bit integer (type int32
) to an integer (type int
). On 32-bit platforms, the 32-bit integer is taken modulo 231, i.e. the high-order bit is lost during the conversion. On 64-bit platforms, the conversion is exact.